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ABSTRACT 

Pulse compression is used in radar systems to improve 
range resolution while maintaining a high duty cycle. In addi-
tion to practical implementation constraints, the key issues for 
the selection of a pulse-compression waveform are mismatch 
loss, peak / integrated range sidelobes, and Doppler tolerance. 
While much progress has been made in the design of non-
linear frequency modulated (FM) chirp waveforms satisfying 
these requirements, the corresponding performance for binary 
phase-coded waveforms is often inadequate. In order to 
improve the range sidelobes achieved with phase-coded 
waveforms, specially designed mismatched pulse compression 
filters can be used. Several such approaches have been 
described in the literature since 1959. This paper will review 
these techniques and highlight a particular approach using 
infinite impulse response (IIR) filters, which has received little 
attention in the past. Using this technique the performance for 
a number of binary phase codes of different length have been 
determined and their Doppler tolerance is investigated. 

1. INTRODUCTION 

The range sidelobes achieved with matched filter phase-
coded pulse compression waveforms, often fail to meet system 
requirements. This is in contrast to non-linear FM chirp 
waveforms where excellent performance usually can be 
realized, even for modest time-bandwidth products [1]. For 
binary phase codes, the best peak sidelobe performance is 
obtained with the so-called Barker codes, which for code 
length up to N=13 will achieve peak sidelobes at a relative 
level of ( )1020 log N⋅ . For longer phase codes, however, 
range sidelobes rapidly approach a level of the order of only 

( )1010 log N⋅ . A graph of best known sidelobe levels for 
matched filtered binary phase code waveforms is shown in 
Figure 1, along with similar results for best known maximum 
length shift register codes [2]. The curve ( )1010 log N⋅  is 
included for comparison. 

Many approaches can be used to modify the matched filter 
design in order to reduce the range sidelobes. These ap-
proached usually result in an increased mismatch loss and a 
potential increase in Doppler sensitivity of the range sidelobes. 
The best-known example of this approach is the Hamming 
weighted linear Chirp signal.  

This paper will review different approaches proposed in 
the past for reducing the range sidelobes for phase coded 

waveforms and, in particular, highlight the approach described 
by Erikmats [3], which appears to have received little attention 
since it was originally published. New results are obtained for 
the performance when this technique is used for longer phase 
codes. While low sidelobes can be achieved in almost all of 
these cases, the resulting mismatch loss varies from a modest 
0.2 dB in one particular case to as much as 5-10 dB or more in 
other cases. 

 
Figure 1 – Matched filter sidelobes for some binary codes. 

2. BINARY PHASE CODES AND SIDELOBE 
SUPPRESSION 

Binary phase coded waveforms are constructed from a 
specific binary code of 1’s and -1’s of length N. A basis sub 
pulse is chosen (often the rectangular function) and this sub-
pulse is repeated N times, but with a sign determined by the 
codeword values, to generate the radar waveform at baseband. 
As described above this would lead to a transmitted waveform 
where the code elements are modulated in phase by 0 or 180 
deg. It is also possible to define complex baseband modulation 
schemes based on the binary codeword [4]. 

Some binary codes result in waveforms with better 
matched filter range sidelobes than others. Much work has 
been done to find codes with the best possible autocorrelation 
properties. Barker codes, with an absolute sidelobe level less 
than or equal to 1, only exist for length up to N=13. For longer 
code lengths, exhaustive or near-exhaustive searches have 
determined the best code words, in terms of range sidelobes, 
for lengths up to 70 [5]. 

Methods for reducing the range sidelobes of binary phase 
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coded signals have been the subject of much research. Key et 
al [6] used a time domain approach to sum delayed and scaled 
versions of the Matched filter output to reduce sidelobes. 
Mosca [7]  and Rihaczek & Golden [8] used a Fourier series 
approximation of the inverse of the frequency contribution 
from the sidelobes. Later, Hua & Oksman [9] improved on 
Rihaczek & Golden by reducing the filter complexity.  

A unique approach using complementary codes was 
developed by Golay [10]. With this approach range sidelobes 
can be completely eliminated, with no penalty in mismatch 
loss, but the need to transmit the two complementary codes 
sequentially (e.g. pulse-to-pulse) makes this approach 
incompatible with many other radar requirements and Doppler 
sensitivity could be prohibitive. 

The basis for the approach proposed in [3] can be found in 
the work of Ackroyd & Ghani [11]. In Section 3 the sidelobe 
suppression concept of code inverse filtering developed by 
Erikmats [3] will first be introduced. Section 4 will describe 
the method of time reversing the data stream in order to 
implement a recursive filter, which would otherwise be 
unrealizable.  Section 5 presents mismatch loss comparisons 
for this and other methods; Doppler sensitivity is addressed in 
Section 6, and implementation considerations are found in 
Section 7. 

3. CODE INVERSE FILTERING 

The method of code inverse filtering is illustrated in the 
diagram shown in Figure 2. As usual in the processing of 
phase-coded waveforms, the first step is matched filtering of 
the sub-pulse. The output of this sub-pulse matched filter is 
then sampled in an analog-to-digital converter (ADC) so that 
the received signal will be a series of +1s and -1s scaled by a 
common (complex) constant. This signal is then processed 
through a combined pulse compression and sidelobe removal 
filter such that its output, for the specific digital binary phase 
code, is a unit impulse. 

 

Figure 2 - Code Inverse Filtering Receiver 

The following discussion starts with the ideal repre-
sentation of the signal at the output of the ADC. Since we 
transmit a binary phase coded signal with sub-pulses 
modulated by +1 or -1, we can represent the received digital 
signal as 

{ }
1

0

( ) ( ) 1,1
N

k k
k

c n n k c cδ
−

=
= − ∈ −∑  (1) 

for a codeword of length N. If we take the Z-transform 
equivalent of the signal we find that 

1 1
0 1 1( ) ... .N

NC z c c z c z− − +
−= + + +  (2) 

If it were possible to design the exact inverse of the code-
generating filter given by equation (2), as the pulse 
compression/sidelobe removal filter, the output in Figure 2 

would be an impulse with zero sidelobes. However, as shown 
by Ackroyd [12] all polynomials with +1/-1 coefficients, have 
at least one zero on, or outside, the unit circle. This, in turn, 
means that a stable response for the inverse of 
( ) ( )1, . .C z i e C z−  is not possible. However, in the case 

where none of the zeros fall exactly on the unit circle, it is 
possible to decompose the polynomial into two parts based on 
the magnitude of its complex zeros i.e.: 

1 1
0 1 1

1 1
0 1 1

( ) ( ) ( )
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( ) ...

L
L
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P z p p z p z
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−

− − +
−

= ⋅

= + + +

= + + +

 (3) 

and N=L+M-1. Here P(z) is the polynomial factor for all zeros 
inside the unit circle and Q(z) is the polynomial factor for the 
zeros outside the unit circle.  Thus the IIR filter 1 ( )P z−  will be 
stable and, when used as the first step in the processing of 
Figure 2, it will remove the sidelobe contribution from zeros 
inside the unit circle. Finding a way to process the signal 
through ( )1Q z−  such that the response is stable, was the key 
development of the paper by Erikmats [3]. Earlier, in order to 
circumvent this problem, Ackroyd & Ghani [11]approximated 
the ideal response of the sidelobe removal filter using a least 
squares non-recursive filter implemented as a finite impulse 
response (FIR) filter.  The longer the FIR filter, the closer the 
sidelobes approach zero. Zoraster continued on Ackroyd & 
Ghani’s research by using a linear programming nonrecursive 
filter to approximate the perfect sidelobe removal filter [13]. 

4. ERIKMATS’ TIME REVERSAL FILTER 

A practical method for processing the signal, such that the 
sidelobes due to zeros outside the unit circle can be 
completely removed, was developed in [3]. We show now 
how time reversal can be used to create the effect of ( )1Q z−  
while still providing a stable response. After the received 
signal c(n) has been processed through ( )1P z−  its Z-
transform will be given by ( )Q z  as defined in equation (3). 
Time reversal changes this Z-transform to: 

1 1
1 2 0( ) ... M

M MQ z q q z q z− − +
− −= + + +  (4) 

 

Figure 3 - Erikmats’ Code Inverse Sidelobe Removal 
 IIR Filter 

The zeros of ( )Q z are now the reciprocal of the zeros of 

( )Q z  and they are therefore all located inside the unit circle. 

The zeros of the time-reversed data can now be removed 
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by a second IIR filter defined by 1 ( )Q z−  and when the 
resulting output is again time-reversed, we will have removed 
the sidelobes due to the zeros outside the unit circle using only 
stable IIR filters. Figure 3 depicts the code inverse processing 
required to completely remove sidelobe levels in a subpulse 
matched binary phase coded pulse compression. 

5. CODEWORD ANALYSIS AND FILTER COMPARISONS 

A comparison of several of the approaches discussed 
above, for sidelobe reduction of binary phase-coded wave-
forms, is shown in   Table 1 for the specific case of a Barker 
code of length N=13. Peak sidelobe level (PSL) and Mismatch 
Loss are shown for designs, which in a time-domain imple-
mentation would require about the same number of multiplies. 
The matched filter only requires integer coefficients and 
would add little to complexity. For the two FIR sidelobe 
reduction filters the number of unique coefficients is actually 
only 13 due to symmetry and interspersed zeros. This is about 
the same as required for the feedback coefficients of a IIR 
filter with NP=12 poles. For the two FIR sidelobe reduction 
filters, sidelobes better than 45 dB down are achieved. Note 
that the PSL achieved with the IIR filtering approach is a 
theoretical number, which would be subject to practical 
implementation constraints. The PSL numbers of around 45 
dB would meet system requirements in many applications. 
Mismatch losses are virtually identical between the three 
approaches. Generalizing from the results of Table 1 it is 
concluded that the actual technique used for the design of a 
sidelobe reduction filter has little effect on Mismatch Loss and 
hardware implementation considerations vs. achieved sidelobe 
level would be the main consideration.  

Because Erikmats’ recursive sidelobe removal filter is 
easily adapted to different binary codes, it was used to find the 
smallest possible mismatch loss through an exhaustive 
computer search of all codes up to length 25. Table 2 shows 
the lowest mismatch loss binary phase code found for each 
code length.  In this table it is important to note that there exist 
equivalent codes with identical mismatch loss properties. 
Obviously, any code whose Z-transform polynomial has the 
same roots will generate the same results.  

Minimum peak sidelobe codes (MPS) [2] have the 
property that their autocorrelation function has the lowest peak 
sidelobe level for a given length code. The mismatch loss of 
these codes when used with the code inverse sidelobe removal 
filter has been analyzed for lengths up to 48  as shown in 
Table 3. 

Table 2 – Codes with Lowest Mismatch Loss Using 
Code Inverse Sidelobe Removal Filter. 

Code 
Length Code Word Loss 

(dB) 
5 −+−−−  0.63 

6 −+−−−−  1.70 

7 +−+ +−−−  1.52 

8 −+−+ +−−−  1.21 

9 −−+ +−+−−−  2.09 

10 −−+ +−+−−−−  1.69 

11 +−+−−+ +−−−−  0.94 

12 −+−+−−+ +−−−−  0.69 

13 −+−+−−+ +−−−−−  0.21 

14 −+−+−−+ +−−−−−−  0.78 

15 +−+ +−+ + +−+ + +−−
−  0.60 

16 −+−+ +−+ + +−+ + +−
−−  1.10 

17 +−−+−+−−−+ +−−−
−−−  1.25 

18 
+ +−+−−+−+ + +−−−
+−−−  1.01 

19 
+−+ +−+ +−+ + +−+ +
+−−−−  1.03 

20 
+−−+ + +−−+−+ + +−
+−−−−−  0.77 

21 
−+ +−+−+ +−+ + +−+
+ + + +−−−  0.78 

22 
−−−+ + +−−+−+−+ +
−−+−−−−−  0.93 

23 
+−+−+−+ +−+ +−−+
+ +−−−−−−−  0.84 

24 
+−+ +−+−−−+ + + +−
−−+−−−+−−−  0.79 

25      +−+ +−+ +−+−+−−−
−−−−−+ + +−−−  0.69 

 
Table 3 - Mismatch Loss of MPS Codes Used With 

Code Inverse Sidelobe Removal Filter 
MPS Code 
Length 

Mismatch 
Loss (dB)   

MPS Code 
Length 

Mismatch 
Loss (dB) 

7 1.5192   28 1.3007 
8 10.4498   29 0.6929 
9 3.1694   30 0.8090 

10 1.7693   31 0.9284 
11 1.4845   32 1.1099 
12 0.8148   33 0.8097 
13 0.2137   34 0.6216 
14 4.1539   35 0.8846 
15 1.4659   36 1.6869 
16 4.8594   37 5.5664 
17 1.7607   38 0.6816 
18 24.0035   39 2.1392 
19 2.1788   40 1.0368 
20 1.9333   41 0.8833 
21 0.7832   42 0.7093 
22 1.0772   43 0.7845 
23 1.4168   44 1.3659 
24 0.8093   45 1.3235 
25 0.7101   46 3.3037 
26 3.8237   47 1.0080 
27 0.6471   48 3.1678 

Table 1 – Comparison of sidelobe reduction filters for 
N=13 Barker code. 

APPROACH MF SL 
FILTER 

PSL 
(dB) 

Mismatch
Loss (dB) 

Key, Fowle, 
and Haggarty 

FIR 
N=13 

FIR 
N=49 45.55 0.2133 

Rihaczek and 
Golden 

FIR 
N=13 

FIR 
N=49 45.14 0.2141 

Erikmats In IIR IIR 
NP=12 >100 0.2137 
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 A comparison of the results from the MPS codes with the 
results from the exhaustive search in Table 2, shows large 
differences in the mismatch loss resulting from the use of the 
code inverse filter. MPS codes rarely give the lowest 
mismatch loss in the sidelobe removal filter as noted in the 
corresponding graphical comparison of Figure 4. Since we 
expect the code inverse mismatched filter (as well as all other 
sidelobe reduction approaches) to perform poorly when one or 
more zeros of the codeword generating polynomial falls close 
to the unit circle, the relationship between mismatch loss and 
the zero closest to the unit circle was explored for the specific 
case N=12 as shown in Figure 5. While there is no one-to-one 
correspondence in this graph, it clearly shows a strong 
correlation. 

 

Figure 5 - Scatter plot of zero closest to unit circle versus 
mismatch loss for N=12 binary codes. 

The code inverse approach to sidelobe elimination is not 
without some disadvantages. Because it is recursive, the filter 
will have a long impulse response, which adds to the length of 
the data window which must be kept after processing through 

the first IIR filter (P-1(z) in Figure 3).  Also, the processed data 
needs to be time reversed for the second pass, requiring 
memory and re-indexing.  It is also important to note that, 
although this approach will work for zeros both inside and 
outside the unit circle, it will not work for zeros very close to 
or on the unit circle where the processing gain would become 
large or infinite.  Another limitation in these simulations is the 
root finding algorithm needed to find the filter coefficients. In 
MATLAB codes longer than 50 could not be processed by the 
standard root finding algorithm. 

One method, suggested in [14], for creating longer codes 
is to concatenate codes.  Using this method the length of the 
new code, derived from the two concatenated codes, is the 
product of the length of the individual codes. Each bit in the 
new code comes from its respective product with each of the 
concatenated code bits. The concatenated codes can be 
processed through cascaded filters in such a way that the 
mismatch loss simply is the sum of the mismatch losses of the 
individual codes. Thus if we concatenate two Barker 13 codes 
we can create a code of length 169 with a mismatch loss of 
only 2 (0.2137 dB)=0.4274 dB⋅   

6. DOPPLER  TOLERANCE 

As might be expected, a Doppler shifted return will not 
achieve the low range sidelobes described above. The 

tolerance of the sidelobe level to Doppler shifted returns 
depends on the radar frequency, the duration of the 
uncompressed pulse, and of course the actual Doppler shift. 
As an example, the response of the code inverse pulse 
compression filter to Doppler shifted inputs, is shown in 
Figure 6 for a hypothetical S-band radar at 3.0 GHz using an 
uncompressed pulse width of 10.5 µs modulated by the binary  
code of length 21, which was listed in Table 2. The range of 
radial velocities corresponds to target velocities of 0 to 
583 knots. While the degradation is substantial it will be noted 
that range sidelobes remain close to 30 dB even for the fastest 
target. This should be compared to the matched filter sidelobe 
level of the best binary code of this length of only 20.4 dB. 

 
 

Figure 4 - Mismatch Loss loss of MPS codes and the 
lowest possible loss, when code inverse filtering is used. 

 

Figure 6 - Effect of Doppler shift on range sidelobes for a 
N=21 code of duration T=10.5 µs at S-band (3.3 GHz). 
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7. IMPLEMENTATION 

The code inverse filters proposed in [3] must be 
implemented as digital IIR filters of total length equal to the 
length of the code. A discussion of the design of such IIR 
filters can be found in [15] and [16, Figure 15.23]. The 
hardware complexity of such an IIR filter would by similar to 
that of a FIR filter of the same length. Thus for the comparison 
presented in Table 1 either the FIR or the IIR approaches to 
range sidelobe suppression could be implemented with similar 
hardware complexity. In either case filters with only real 
coefficients would have to be implemented identically in the 
in-phase and quadrature channels. However, for better PSL the 
FIR approaches would require longer filters.  

For long phase codes, use of the Fast Fourier Transform 
(FFT) algorithm is the preferred approach for implementing 
digital pulse compression. In this case the IIR implementation 
would not be possible and only a FIR sidelobe reduction filter 
design would be applicable. 

8. CONCLUSIONS 

This paper has reviewed several techniques for reducing 
the range sidelobe levels, when binary phase coded pulse 
compression is used in radar systems. Except for the special 
case of complementary codes, these approaches all result in a 
certain mismatch loss, display some degree of Doppler 
sensitivity, and differ in their specific hardware implemen-
tation. All are based on somewhat different mathematical 
criteria but they all have in common, that the pulse 
compression operation is implemented using a cascade of a 
single pulse matched filter and a codeword mismatched filter. 
The particular approach, where the codeword mismatched 
filter is implemented as an exact inverse to the code word, was 
examined in detail. This filter can be implemented as two 
cascaded IIR filters, of total length equal to the codeword 
length, but with an intermediate step of time-reversal of the 
data stream. As long as the code-generating polynomial has no 
zeroes on, or close to, the unit circle, these filters can be 
implemented at the cost of a modest mismatch loss, while 
range sidelobes are completely removed, at least theoretically.  
Typical mismatch losses are less than 1 dB and thus 
performance compares favorably with the frequently used 
Hamming weighted linear chirp waveform. In a specific 
example for an S-band radar, it was shown that Doppler 
sensitivity may well be acceptable and this technique therefore  
offers an attractive pulse compression approach for systems 
with very low pulse compression ratios (<20) while requiring 
good range sidelobes performance. 
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